Drug-target interaction prediction: A Bayesian ranking approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALADIN: A New Approach for Drug-Target Interaction Prediction

Due to its pharmaceutical applications, one of the most prominent machine learning challenges in bioinformatics is the prediction of drug–target interactions. State-of-the-art approaches are based on various techniques, such as matrix factorization, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we extend BLM by the incorporation of a hub...

متن کامل

Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction

In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approache...

متن کامل

Drug-target interaction prediction using ensemble learning and dimensionality reduction.

Experimental prediction of drug-target interactions is expensive, time-consuming and tedious. Fortunately, computational methods help narrow down the search space for interaction candidates to be further examined via wet-lab techniques. Nowadays, the number of attributes/features for drugs and targets, as well as the amount of their interactions, are increasing, making these computational metho...

متن کامل

Classification and its application to drug-target interaction prediction

Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clus...

متن کامل

Globalized Bipartite Local Learning Model for Drug-Target Interaction Prediction

Computational methods provide efficient ways to predict possible interactions between drugs and targets, which is critical in drug discovery. Supervised prediction with bipartite Local Model recently has been shown to be effective for prediction of drug-target interactions. However, this pure “local” model is unapplicable to new drug or target candidates that currently have no known interaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods and Programs in Biomedicine

سال: 2017

ISSN: 0169-2607

DOI: 10.1016/j.cmpb.2017.09.003